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Abstract. Motivated from the recent work of Srivastava et al. (H.M. Srivastava, Qing-Hua Xu, Guang-Ping
Wau, Coefficient estimates for certain subclasses of spiral-like functions of complex order, 23 (2010) 763-768),
we aim to determine the coefficient estimates for functions in certain subclasses of close-to-convex and
related functions of complex order, which are here defined by means of Salagean derivative operator and

Cauchy-Euler type non-homogeneous differential equation. Several interesting consequences of our results
are also observed.

1. Introduction

Let A denote the class of function f(z):

f(z):z+iajzj, 1

=2

which are analytic in the unit disk E = {z : |z| < 1}. Let f and g be analytic in E, we say that f is subordinate
to g, written as f(z) < g(z) if there exists a Schwarz function w, which is analytic in E with w(0) = 0 and
[w(z)| < 1 (z € E), such that f(z) = g(w(z)). In particular, when g is univalent, then the above subordination
is equivalent to f(0) = g(0) and f(E) € g(E), see [7]. Also let S*(y), C(y) , K(y) and Q(y) be the subclasses
of A consisting of all functions which are starlike, convex, close-to-convex and quasi convex of complex
order y (y # 0) respectively, for details see [1, 9-12]. We note that for 0 < y < 1, these classes coincide with
the well known classes of starlike, convex , close-to-convex and quasi convex of order 1 — y.

Salagean [14] introduced the operator D"(n € Np) which is also called Salagean derivative operator and
is defined as:

D%f(z) = f(z) and D' f(z) = zf(2),

and, in general,

D"f(z) = D(D"'f(2)) (n € N)
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or, equivalently,

D'f(z)=z+ Zj”a,zf (neNp: feA.
=2

Leth : E — C be a convex function such that #(0) = 1 and Re h(z) > 0 (z € E). In a recent work Srivastava
et al. [22] study the following class of starlike functions,

1 [z[(1 = A)D"f(z) + AD"1 f(2)] B

S,(n, A, y) = {f :feAand 1+ )—/ A=) D f@ + D" () 1] eh(E) (z € E)}

where 0 < A < 1;n € Ny; ¥ € C\{0}. Note that with h(z) = %
5,(0,0,y) =S5(»), S,(0,1,y) =C(p).
Here we define the following.

Definition 1.
Let f € A. Then f € KQ(n, A, y) if there exists a function g € S (n, A, 1) such that

1 z[(1 = A) D" f(z) + AD™ f(2)]

T A ) D) + ADg0)

~1| e (E) z € E) )

where (0 < A < 1;n € Ny; y € C\{0}).
We note that with h(z) = 2

1-z7

KQ(0,1,7) =K(y), KQ(0,1,y) =Q»).

Motivated from the recent work of Srivastava et al. [22] the main purpose of our investigation is to derive
coefficient estimates of a subfamily Tj(n, A, y; u) of A, which consists of functions f(z) in A satisfying the
following Cauchy Euler type non homogenous differential equation

d>w dw

2_ —

z 1 +2(1+ )z e

where w = f(2), h(z) € KQ((n, A, ), u € R —(—o0,-1], for related work see [2-6, 8, 15-27] and the references
therein.

+u(l+pw =1+ p) 2+ wh(z), 3)

2. Preliminary Results

We need the following lemmas, which are essential in our forthcoming results.
Lemma 1 [22]. If the function

f@)=z+ Z aizl € S (n,4,7),

=2
then

o < iy (k + W Oly)
= G-pa-asa

(jeNo=:N\{1} = {2,3,4ecccc...... D,
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Lemma 2 [13]. Let the function g given by

g(Z) = 2 bkzkl
k=1

be convex in E. Also let the function f given by

[

f@ =Y ad,

k=1

be analyticin E.If f(z) < g(z) (z € E), then
laxl < |71

3. Coefficient Estimates for Functions in the Class KQ(x, A, y)

Theorem 1.
Let the function f given by (1). If f € KQ(n, A, ), then

laj| <

T12 G+ I (O))) . Iy I )] fi 17572 (k+ 1 (0))
P+ G-DA) A+ (- DA & (k- 1)

This result is sharp.
Proof.

101

Suppose that the functions F(z) and G(z) be defined in terms of the Saldgean derivative operator D", by

Fz) = (1-A)D"f(z)+AD"™!f(2)
= zZ+ Z;iz A]'Zj,

and

G(2)

(1-A4)D"g(z) + AD"g(z)
z+ Y2, B,

where
Aj=7"(1+(G-1DA)aj, and B; = j" (1 + (j — DA) b;.
From Definition 1, we have

N 1 [zF’(z)
Y

- 1] € h(E) (z € E).

G(z)
Let
_1 zF'(2) 3
p(z) = y [ cQ 1] € h(E).
This implies that

2F'(2) = [1+ y(p(z) - D] G().
After some simplification, we get

j-1

jA]' = Bj + )/ZpkB]‘_k
k=1

(5)
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-1

jlail < Bil+ IyIZ el B4
Therefore by using Lemma 1 together with Lemma 2, we have

|.|<H,1;§<k+|h'(0>|) )y||h'<0>|f1 [ k+1©))
G- =i

Hence,

o < M k+HO) PO & &+ @)D
TZ A+ G-t A+ G-DA) & (k=D

This completes the proof of Theorem 1.

We can state the following corollaries:

Corollary 1. Let h(z) = %jg; and f € Abe given by (1). If f € KQ((n, A, y), then

Hf*z(k+<A—B>> ly|1A - Bl ZH]“(IH(A—B))

aj| < + - . (7)
< F G G=nm7 T T a G & G-kt
The above corollary with n = 0 is proved recently in [24].
Corollary 2. Let h(z) = 1+Z *2 and f € Abe given by (1). If f € KQ((n, A, y), then
1 YG-1)
o ! ®

< - . + . :
FA+G=DA)  jrA+G-DA)

For y = 1,n = 0 in (8), we obtain the well known coefficient estimates of close-to-convex ( with A = 0) and
quasi convex (with A = 1) mappings respectively.

4. Coefficient Estimates of the Class Tj,(n, A, y; 1)

The theorem below is our main coefficient estimates for functions in the class T;,(1, A, y/; u).
Theorem 2. Let f € T,(n, A, y; u) and be defined by (1). Then for n € N* =1{2,3,4,...}

j-1

e | M k+ WO ol Z [y (e + 1)
Sl |7 A G-DA R A G- & (G-k-DE |

©)

|an| <

Proof. Since f € Ty(n, A, y; ), then there exist h(z) = z + Y-, byz" € KQ((n, A, y), such that (3) holds true.
Thus it follows that

(1+ )2+ p)
n+1+wm+p)

by, neN', uyeR—(—o0,—1].

n =

Hence, by using Theorem 1, we immediately obtain the desired inequality (9).
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