

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Coefficient Bounds of Certain Subfamilies of Close-to-Convex Functions of Complex Order Defined by Sãlãgean Derivatives

Wasim Ul-Haqa,b, Shabana Manzarb

^aDepartment of Mathematics, College of Science in Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia.
^bDepartment of Mathematics, Abdul Wali Khan University Mardan, KPK, Pakistan.

Abstract. Motivated from the recent work of Srivastava et al. (H.M. Srivastava, Qing-Hua Xu, Guang-Ping Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, 23 (2010) 763-768), we aim to determine the coefficient estimates for functions in certain subclasses of close-to-convex and related functions of complex order, which are here defined by means of Sãlãgean derivative operator and Cauchy-Euler type non-homogeneous differential equation. Several interesting consequences of our results are also observed.

1. Introduction

Let \mathcal{A} denote the class of function f(z):

$$f(z) = z + \sum_{i=2}^{\infty} a_i z^j, \tag{1}$$

which are analytic in the unit disk $E = \{z : |z| < 1\}$. Let f and g be analytic in E, we say that f is subordinate to g, written as f(z) < g(z) if there exists a Schwarz function w, which is analytic in E with w(0) = 0 and |w(z)| < 1 ($z \in E$), such that f(z) = g(w(z)). In particular, when g is univalent, then the above subordination is equivalent to f(0) = g(0) and $f(E) \subseteq g(E)$, see [7]. Also let $S^*(\gamma)$, $C(\gamma)$, $K(\gamma)$ and $Q(\gamma)$ be the subclasses of $\mathcal A$ consisting of all functions which are starlike, convex, close-to-convex and quasi convex of complex order $g(x) \neq g(x)$ or respectively, for details see [1, 9–12]. We note that for $g(x) \neq g(x)$ these classes coincide with the well known classes of starlike, convex, close-to-convex and quasi convex of order g(x).

Sãlãgean [14] introduced the operator $D^n(n \in N_0)$ which is also called Sãlãgean derivative operator and is defined as:

$$D^{0}f(z) = f(z)$$
 and $D^{1}f(z) = zf(z)$, and, in general, $D^{n}f(z) = D(D^{n-1}f(z)) \ (n \in N)$

2010 Mathematics Subject Classification. Primary 30C45, 30C50

Keywords. Analytic functions, starlike functions, close-to-convex functions of complex order, Sãlăgean derivatives.

Received: 23 December 2013; Accepted: 23 May 2014

Communicated by Hari M. Srivastava

W. Ul-Haq wishes to acknowledge Deanship of Scientific Research (DSR) Majmaah University for financial and technical support. Email addresses: wasim474@hotmail.com (Wasim Ul-Haq), shabana.manzar@yahoo.com (Shabana Manzar) or, equivalently,

$$D^{n} f(z) = z + \sum_{j=2}^{\infty} j^{n} a_{j} z^{j} \ (n \in N_{0} : f \in \mathcal{A}).$$

Let $h: E \longrightarrow \mathbb{C}$ be a convex function such that h(0) = 1 and $\mathbb{R}e \ h(z) > 0 \ (z \in E)$. In a recent work Srivastava et al. [22] study the following class of starlike functions,

$$S_h^*(n,\lambda,\gamma) = \left\{ f : f \in \mathcal{A} \text{ and } 1 + \frac{1}{\gamma} \left[\frac{z[(1-\lambda)D^n f(z) + \lambda D^{n+1} f(z)]}{(1-\lambda)D^n f(z) + \lambda D^{n+1} f(z)} - 1 \right] \in h(E) \ (z \in E) \right\}$$

where $0 \le \lambda \le 1$; $n \in \mathbb{N}_0$; $\gamma \in \mathbb{C} \setminus \{0\}$. Note that with $h(z) = \frac{1+z}{1-z}$

$$S_h^*(0,0,\gamma) = S^*(\gamma), \ S_h^*(0,1,\gamma) = C(\gamma).$$

Here we define the following.

Definition 1.

Let $f \in \mathcal{A}$. Then $f \in \mathcal{KQ}(n,\lambda,\gamma)$ if there exists a function $g \in S_h^*(n,\lambda,1)$ such that

$$1 + \frac{1}{\gamma} \left[\frac{z[(1-\lambda)D^n f(z) + \lambda D^{n+1} f(z)]'}{(1-\lambda)D^n g(z) + \lambda D^{n+1} g(z)} - 1 \right] \in h(E) \ (z \in E)$$
 (2)

where $(0 \le \lambda \le 1; n \in N_0; \gamma \in \mathbb{C} \setminus \{0\})$.

We note that with $h(z) = \frac{1+z}{1-z}$,

$$\mathcal{K}Q_{\ell}(0,1,\gamma) = K(\gamma), \ \mathcal{K}Q_{\ell}(0,1,\gamma) = Q(\gamma).$$

Motivated from the recent work of Srivastava et al. [22] the main purpose of our investigation is to derive coefficient estimates of a subfamily $T_h(n, \lambda, \gamma; \mu)$ of \mathcal{A} , which consists of functions f(z) in \mathcal{A} satisfying the following Cauchy Euler type non homogenous differential equation

$$z^{2}\frac{d^{2}w}{dz^{2}} + 2(1+\mu)z\frac{dw}{dz} + \mu(1+\mu)w = (1+\mu)(2+\mu)h(z),$$
(3)

where w = f(z), $h(z) \in \mathcal{K}Q_{\langle}(n,\lambda,\gamma)$, $\mu \in \mathbb{R} - (-\infty,-1]$, for related work see [2–6, 8, 15–27] and the references therein.

2. Preliminary Results

We need the following lemmas, which are essential in our forthcoming results. **Lemma 1** [22]. If the function

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j \in S_h^*(n, \lambda, \gamma),$$

then

$$\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2} (k + |h'(0)||\gamma|)}{(j-1)! j^{n} (1 - \lambda + j\lambda)} \quad (j \in N_{0} =: N \setminus \{1\} = \{2, 3, 4, \dots, \}).$$

Lemma 2 [13]. Let the function g given by

$$g(z) = \sum_{k=1}^{\infty} b_k z^k,$$

be convex in *E*. Also let the function *f* given by

$$f(z) = \sum_{k=1}^{\infty} a_k z^k,$$

be analytic in E. If f(z) < g(z) ($z \in E$), then

$$|a_k| \leq |g_1|$$

3. Coefficient Estimates for Functions in the Class $\mathcal{K}Q_{\langle}(n,\lambda,\gamma)$

Theorem 1.

Let the function f given by (1). If $f \in \mathcal{KQ}(n, \lambda, \gamma)$, then

$$\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2} (k + |h'(0)|)}{j^{n} \left(1 + (j-1)\lambda\right) j!} + \frac{\left|\gamma\right| |h'(0)|}{j^{n+1} \left(1 + (j-1)\lambda\right)} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2} (k + h'(0))}{(j-k-1)!}.$$

$$(4)$$

This result is sharp.

Proof.

Suppose that the functions F(z) and G(z) be defined in terms of the Salagean derivative operator D^n , by

$$F(z) = (1 - \lambda) D^{n} f(z) + \lambda D^{n+1} f(z)$$

= $z + \sum_{j=2}^{\infty} A_{j} z^{j}$, (5)

and

$$G(z) = (1 - \lambda) D^n g(z) + \lambda D^n g(z)$$

= $z + \sum_{j=2}^{\infty} B_j z^j$, (6)

where

$$A_i = j^n (1 + (j-1)\lambda) a_i$$
, and $B_i = j^n ((1 + (j-1)\lambda) b_i$.

From Definition 1, we have

$$1 + \frac{1}{\gamma} \left[\frac{zF'(z)}{G(z)} - 1 \right] \in h(E) \ (z \in E).$$

Let

$$p(z) = \frac{1}{\gamma} \left[\frac{zF'(z)}{G(z)} - 1 \right] \in h(E).$$

This implies that

$$zF'(z) = [1 + \gamma(p(z) - 1)]G(z).$$

After some simplification, we get

$$jA_j = B_j + \gamma \sum_{k=1}^{j-1} p_k B_{j-k}$$

$$j|A_j| \le |B_j| + |\gamma| \sum_{k=1}^{j-1} |p_k| |B_{j-k}|.$$

Therefore by using Lemma 1 together with Lemma 2, we have

$$\left|A_{j}\right| \leq \frac{\prod_{k=0}^{j-2} \left(k + |h'(0)|\right)}{j(j-1)!} + \frac{\left|\gamma\right| |h'(0)|}{j} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2} \left(k + |h'(0)|\right)}{(j-k-1)!}.$$

Hence,

$$\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2} \left(k + |h'(0)|\right)}{j^{n} \left(1 + (j-1)\lambda\right) j!} + \frac{\left|\gamma\right| |h'(0)|}{j^{n+1} \left(1 + (j-1)\lambda\right)} \sum_{k=1}^{j-1} \frac{\left(k + |h'(0)|\right)}{\left(j - k - 1\right)!}.$$

This completes the proof of Theorem 1.

We can state the following corollaries:

Corollary 1. Let $h(z) = \frac{1+Az}{1+Bz}$ and $f \in \mathcal{A}$ be given by (1). If $f \in \mathcal{KQ}(n, \lambda, \gamma)$, then

$$\left|a_{j}\right| \leq \frac{\prod_{k=0}^{j-2} \left(k + (A - B)\right)}{j! \, j^{n} \, \left(1 + (j - 1)\lambda\right) \, j!} + \frac{\left|\gamma\right| |A - B|}{j^{n+1} \, \left(1 + (j - 1)\lambda\right)} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2} \left(k + (A - B)\right)}{(j - k - 1)!}.\tag{7}$$

The above corollary with n = 0 is proved recently in [24].

Corollary 2. Let $h(z) = \frac{1+z}{1-z}$ and $f \in \mathcal{A}$ be given by (1). If $f \in \mathcal{KQ}_{\langle}(n,\lambda,\gamma)$, then

$$\left|a_{j}\right| \le \frac{1}{i^{n}\left(1+(j-1)\lambda\right)} + \frac{\left|\gamma\right|(j-1)}{i^{n}\left(1+(j-1)\lambda\right)}.$$
 (8)

For $\gamma = 1$, n = 0 in (8), we obtain the well known coefficient estimates of close-to-convex (with $\lambda = 0$) and quasi convex (with $\lambda = 1$) mappings respectively.

4. Coefficient Estimates of the Class $T_h(n, \lambda, \gamma; \mu)$

The theorem below is our main coefficient estimates for functions in the class $T_h(n, \lambda, \gamma; \mu)$. **Theorem 2.** Let $f \in T_h(n, \lambda, \gamma; \mu)$ and be defined by (1). Then for $n \in N^* = \{2, 3, 4, \ldots\}$

$$|a_n| \le \frac{(1+\mu)(2+\mu)}{(n+1+\mu)(n+\mu)} \left[|a_j| \le \frac{\prod_{k=0}^{j-2} (k+|h'(0)|)}{j^n (1+(j-1)\lambda) j!} + \frac{|\gamma| |h'(0)|}{j^{n+1} (1+(j-1)\lambda)} \sum_{k=1}^{j-1} \frac{\prod_{k=0}^{j-k-2} (k+h'(0))}{(j-k-1)!} \right]. \tag{9}$$

Proof. Since $f \in T_h(n, \lambda, \gamma; \mu)$, then there exist $h(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{KQ}_{\langle}(n, \lambda, \gamma)$, such that (3) holds true. Thus it follows that

$$a_n = \frac{(1+\mu)(2+\mu)}{(n+1+\mu)(n+\mu)}b_n, \quad n \in \mathbb{N}^*, \ \mu \in \mathbb{R} - (-\infty, -1].$$

Hence, by using Theorem 1, we immediately obtain the desired inequality (9).

References

- [1] H. S. Al-Amiri and T. S Fernando, On close-to-convex functions of complex order, Internat. J. Math. and Math. Sci. 13(1990), 321-330.
- [2] O. Altintas, Ö. Özkan and H. M. Srivastava, Neighbourhoods of a classof analytic functions with negative coefficients, Appl. Math. Lett. 13 (3) (1995), 63-67.
- [3] O. Altintas, Ö. Özka and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (2001), 207-218.
- [4] O. Altintas, Ö. Özkan and H. M. Srivastava, Neighbourhoods of a certain family of multivalent functions with negative coefficient, Comput. Math. Appl. 47(2004), 1667-1672.
- [5] O. Altintas, H. Irmak, S. Owa and H. M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett. 20(2007), 1218-1222.
- [6] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(2013),1165-1171.
- [7] A. W. Goodman, Univalent Functions, Vol. I, Polygonal Publishing House, Washington, New Jersey, 1983.
- [8] J. M. Jahangiri, Y. C. Kim and H. M. Srivastava, Construction of acertain class of harmonic close-to-convex functions associated with the Alexander integral transform, Integral Transforms Spec. Funct. 14(2003), 237-242.
- [9] O. S. Kown and S. Owa, On quasi convex functions of complex order, Soochow J. Math. 20 (1994), 241-250.
- [10] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. Sect. A 12(1983), 153-159.
- [11] K. I. Noor, Quasi-convex functions of complex order, PanAmer. Math. J. 3(2)(1993), 81-90.
- [12] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett.15(1)(2002), 63-69.
- [13] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 1) 48 (1943), 48-82.
- [14] G. S Sālāgean, Subclass of univalent functions, in: Complex Analysis: Fifth Romanian-Finisg Seminar, Part 1 (Bucharest, 1981), in: Lecture Notes in Mathematics, vol. 1013, Springer-Verlag, Berlin, Heidelberg and New York, 1983, pp. 362-372.
- [15] H. M. Srivastava, Subordinations for multivalent analytic functions associated with the Dzoik-Srivastava operator, Integral Transforms Spec. Funct. 20(2009), 581-606.
- [16] H. M. Srivastava and S. Owa, Certain classes of analytic functions with varying arguments, J. Math. Appl. 136(1988), 217-228.
- [17] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
- [18] H. M. Srivastava, O. Altıntaş and S. K. Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett. 24(2011), 1359-1363.
- [19] H. M. Srivastava, S.-H. Li and H. Tang, Certain classes of k-uniformlyclose-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl. 1 (3) (2009), 49-63(electronic).
- [20] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44(2001), 145-163.
- [21] H. M. Srivastava, D. Raducanu and G. S. Salagean, A new class of generalized close-to-starlike functions defined by the Srivastava-Attiya operator, Acta Math. Sinica (English Ser.) 29 (2013), 833-840.
- [22] H. M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett. 23(2010), 763–768.
- [23] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(2013), 831–842.
- [24] W. Ul-Haq, A. Nazneen and N.Rehman, Coefficient estimates for certain subfamilies of close-to-convex functions of complex order, Filomat, in press.
- [25] W. Ul-Haq, A. Nazneen, M. Arif and N.Rehman, Coefficient bounds for certain subclasses of close-to-convex functions of Janowski type, J. Comp. Anal. Appl, 16(1)(2014), 133-138.
- [26] Q.-H. Xu, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24 (2011), 396-401.
- [27] Q.-H. Xu, C.-B. Lv, N.-C. Lou and H. M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Filomat 27(2013), 1351–1356.